R-2530B Cyberdyne Pit

Summary of Project Area, Survey, & Flight

Project

 Description: NC 24/27 Widening NC 740 to East of Pee Dee River in Stanly and Montgomery Counties. Cyberdyne Pit Original Flight

Image Acquisition

- ucs-748cp, DOP 10/20/20, DJI Inspire 2 Drone, DGI Zenmuse X4s camera, FL 8.8 mm, flying height 400ft AMGL
- short axis flown with a south/north direction of flight with nominal 0.117 ft GSD
- weather conditions were about 70 degrees, minimal clouds, winds about 5 mph
- manned aircraft flight fi-748, DOP 10/19/20, Vexcel UltraCam Eagle M3 camera
- Survey/Control
- GNSS exposure station data available via GeoCue Loki ASP system
- horizontal datum NAD 1983 (Conus), vertical datum NAVD 88, geoid Geoid18 (Conus), R2527-6 localization point
- no control issues

Project Graphic with Image Background

- October 20, 2020 UAS Flight (UCS-748CP)
- Short axis (south/north) oriented nadir flight lines
- 63 images (planned 80% forward and side overlap)

Ground Control Points and Checkpoints Locations

• Orthophoto with 5 field surveyed ground control points, 18 independent checkpoints consisting of Aeropoints and field surveyed checkpoints, exposure stations, & original project boundary

Classified Ground Boundary (from 10-20-20 UAS Flight)

Classified Ground Boundary = 4.21 Acres

Void Areas are Indicated in Pink

UAS Project with Non-Metric Camera for Earthwork Volumes

Image Alignment Results

Independent Checkpoint Accuracy 5 GCP Only

Independent Checkpoint Accuracy 5 GCP + Exposure Stations

	Point ID	X error (ft)	Y error (ft)	Z error (ft)
No. Points =		18	18	18
Min (ft) =		-0.116	-0.134	-0.548
Max (ft) =		0.076	0.001	-0.010
Mean (ft) =		0.011	-0.082	-0.167
Std Dev (ft) =		0.050	0.034	0.132
RMSE (ft) =		0.050	0.089	0.211
FVA (ft) =				0.413
RMSE R (ft) =		0.102		
Case 1 95% CE(ft) =		0.176		
Case 2 ~ CE(ft) =		0.170		

	Point ID	X error (ft)	Y error (ft)	Z error (ft)
No. Points =		18	18	18
Min (ft) =		-0.239	-0.113	-0.414
Max (ft) =		-0.043	0.084	0.044
Mean (ft) =		-0.096	-0.015	-0.127
Std Dev (ft) =		0.052	0.047	0.108
RMSE (ft) =		0.108	0.048	0.165
FVA (ft) =				0.324
RMSE R (ft) =		0.119		
Case 1 95% CE(ft) =		0.205		
Case 2 ~ CE(ft) =		0.192		

No GNSS Block Shift applied

Dense Point Cloud Accuracy Results

Vertical RMS Summary Statistics for Check Points using Classified Point Cloud

The following table provides a summary of the vertical RMS statistics for all Check point measurements taken from the classified Point Cloud data.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			18		
Maximum (ft.)			0.159		
Minimum (ft.)			-0.506		
Mean (ft.)			-0.146		
Standard Deviation (ft.)			0.163		
RMSE (ft.)			0.216		
95% Accuracy (ft)			0.423		
99.74% Accuracy (ft)			0.647		

21,998,078 points for 4.21 acres

Classified Point Cloud Boundary from 10-20-20 UAS Flight

Point Cloud Generation Process is fully automated so whatever is shown in imagery is captured

1-Foot DEM Accuracy Results

Vertical RMS Summary Statistics for Check Points using 1-foot DEM

The following table provides a summary of the vertical RMS statistics for all Check point measurements taken from the 1-foot DEM data.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			I 18		
Maximum (ft.)			0.163		
Minimum (ft.)			-0.505		
Mean (ft.)			-0.136		
Standard Deviation (ft.)			0.161		
RMSE (ft.)			0.207		
95% Accuracy (ft)			0.406		
99.74% Accuracy (ft)			0.622		

182,925 points for 4.21 acres

Classified Point Cloud Boundary from 10-20-20 UAS Flight

Point Cloud Generation Process is fully automated so whatever is shown in imagery is captured

2.5-Foot DEM Accuracy Results

Vertical RMS Summary Statistics for Check Points using 2.5-foot DEM

The following table provides a summary of the vertical RMS statistics for all Check point measurements taken from the 2.5-foot DEM data.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			18		
Maximum (ft.)			0.175		
Minimum (ft.)			-0.529		
Mean (ft.)			-0.122		
Standard Deviation (ft.)			0.175		
RMSE (ft.)			0.209		
95% Accuracy (ft)			0.409		
99.74% Accuracy (ft)			0.626		

29,287 points for 4.21 acres

Classified Point Cloud Boundary from 10-20-20 UAS Flight

Point Cloud Generation Process is fully automated so whatever is shown in imagery is captured

Vertical RMS Summary Statistics for Check Points using UASMaster Stereo View at a Base to Height Ratio Near 0.15

The following table provides a summary of the vertical RMS statistics for all check point stereoscopic measurements using a base to height ratio of 0.15 or less for UAV stereo pairs with an 80% overlap (sensor dependent). A small base to height ratio demonstrates weakness in stereo measured vertical accuracies.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			18		
Maximum (ft.)			-0.635		
Minimum (ft.)			1.142		
Mean (ft.)			0.071		
Standard Deviation (ft.)			0.482		
RMSE (ft.)			0.474		
95% Accuracy (ft)			0.929		
99.74% Accuracy (ft)			1.421		

Vertical RMS Summary Statistics for Check Points using UASMaster Stereo View at a Base to Height Ratio Near 0.60

The following table provides a summary of the vertical RMS statistics for all check point stereoscopic measurements using a base to height ratio of, or very near 0.60 for UAV stereo pairs with an 20% overlap (sensor dependent), may include cross strip stereo pairs. A large base to height ratio demonstrates greater stereo measured vertical accuracies.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			18		
Maximum (ft.)			0.100		
Minimum (ft.)			-0.447		
Mean (ft.)			-0.166		
Standard Deviation (ft.)			0.136		
RMSE (ft.)			0.212		
95% Accuracy (ft)			0.416		
99.74% Accuracy (ft)			0.637		

Summary of Earthwork Quantities

(Volume Boundary with Voids from 10-20-20 UAS Flight)

R-2530B Cyberdyne Cut Quantities for 2.81 Acre Terrain Data Boundary

(as Compared to Original DTM collected from Manned Aircraft Mission)

Comparison DTM	Mission Date	Point Spacing	Voided Areas	Cut
		(ft)	Excluded	(cubic yards)
UAS Mission UCS-748CP	10/20/2020	2.5	Yes	354.337
UAS Mission UCS-748CP	10/20/2020	1	Yes	381.076

The original dtm from manned aircraft has a 10' grid spacing

Manned Aircraft Flight Mission (Fi-748) Date: 10-19-2020

UAS Flight Mission (UCS-748CP) Date: 10-20-2020

Manned Flight DTM Accuracy Results

Vertical RMS Summary Statistics for Check Points using Manned Flight DTM

The following table provides a summary of the Vertical RMS statistics for all Check point measurements taken from the Manned Flight DTM data.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			18		
Maximum (ft.)			0.190		
Minimum (ft.)			-0.614		
Mean (ft.)			-0.067		
Standard Deviation (ft.)			0.230		
RMSE (ft.)			0.233		
95% Accuracy (ft)			0.458		
99.74% Accuracy (ft)			0.700		

Manned flight DTM has break lines and a 10' grid spacing for points

Vertical RMS Summary Statistics for Check Points using ISDM Stereo View at 60 Degrees

The following table provides a summary of the vertical RMS statistics for all check point stereoscopic measurements using a base to height ratio near 0.30 for manned flight stereo pairs with a 60% overlap.

Check Point RMS Statistics					
Parameter	X residual	Y residual	Z residual		
Number of Points			18		
Maximum (ft.)			0.010		
Minimum (ft.)			-0.310		
Mean (ft.)			-0.163		
Standard Deviation (ft.)			0.096		
RMSE (ft.)			0.188		
95% Accuracy (ft)			0.369		
99.74% Accuracy (ft)			0.564		

Summary Table of RMSE & 95% FVA

Platform	Camera Size & Type	No. of Images	Date of Photography	Product	No. of Independent Check Points	RMSE Z (ft)	FVA (ft)
LIAC	20 Mpixel	160	2/4/2020	AT (GCP only)	18	0.211	0.413
UAS	non-metric	100	2/4/2020	AT (GCP+ GNSS)	18	0.165	0.324
LIAC	20 Mpixel	160	2/4/2020	**2 Image Stereo Measurement (80% FOL)	18	0.474	0.929
UAS	non-metric	100	2/4/2020	**2 Image Stereo Measurement (20% FOL)	18	0.212	0.416
Manned Aircraft	450 Mpixel metric	4	1/28/2020	2 Image Stereo Measurement (60% FOL)	18	0.188	0.369
	20 Maiyal			Dense Point Cloud	18	0.216	0.423
UAS	20 Mipixei	160	2/4/2020	1 feet DEM*	18	0.207	0.406
	non-metric			2.5 foot DEM*	18	0.209	0.409
Manned Aircraft	450 Mpixel metric	4	1/28/2020	DTM* (breaklines & 10 foot spaced points)	18	0.233	0.458

*Standard delivery products (note 2.5 foot DEM may exceed CADD software limits due to number of points)

R-2530B Cyberdyne Borrow Pit Conclusions

- Target RMSE accuracy values are an X and Y (Easting & Northing) of 0.12 ft and Z (Elevation) of 0.18 ft. The image alignment (aerotriangulation) results using 5 ground control points and GNSS PPK camera station positions yielded RMSE values of 0.108 ft in X, 0.048 ft in Y, and 0.165 ft in Z, all below the target accuracy values.
- On this project, the 2 image stereo measurements at 60% forward overlap taken on the Manned flight imagery indicate better RMSE Z and FVA values than both the 80% and 20% forward overlap image stereo measurements taken on the UAS imagery. Testing on other UAS project imagery also indicates 2 UAS image stereo measurements are not reliably accurate for earthwork determination.
- The 1 ft DEM contains 625% more points than the 2.5 ft DEM, thus making the 2.5 ft DEM file size much smaller and more manageable. With a cut difference of only 26.74 cubic yards between the 1 ft DEM and 2.5 ft DEM over 2.1 acres one can conclude that the 2.5 ft DEM is dense enough data to provide for accurate volumetric calculations and comparisons and the 1 ft DEM is not necessary.
- The 2.5 ft UAS DEM has a lower RMSE Z and FVA than the DTM collected from the Manned flight. The denser 2.5 ft DEM point interval captures the overall terrain better than the break lines and 10 ft point interval of the DTM.
- Since there is a limit to the amount of data that can be input into our CADD software, UAS imagery projects are not ideal for larger mapping areas.
- Projects best suited for utilizing UAS imagery should have cleared ground with little to no vegetation.